24 research outputs found

    Cognitive architecture for an Attention-based and Bidirectional Loop-closing Domain (CABILDO)

    Get PDF
    This Ph. D. Thesis presents a novel attention-based cognitive architecture for social robots. The architecture aims to join perception and reasoning considering a double and simultaneous imbrication: the ongoing task biases the perceptual process to obtain only useful elements whereas perceived items determine the behaviours to be accomplished. Therefore, the proposed architecture represents a bidirectional solution to the perception-reasoning-action loop closing problem. The basis of the architecture is an Object-Based Visual Attention model. This perception system draws attention over perceptual units of visual information, called proto-objects. In order to highlight relevant elements, not only several intrinsic basic features (such as colour, location or shape) but also the constraints provided by the ongoing behaviour and context are considered. The proposed architecture is divided into two levels of performance. The lower level is concerned with quantitative models of execution, namely tasks that are suitable for the current work conditions, whereas a qualitative framework that describes and defines tasks relationships and coverages is placed at the top level. Perceived items determine the tasks that can be executed in each moment, following a need-based approach. Thereby, the tasks that better fit the perceived environment are more likely to be executed. Finally, the cognitive architecture has been tested using a real and unrestricted scenario that involves a real robot, time-varying tasks and daily life situations, in order to demonstrate that the proposal is able to efficiently address time- and behaviour-varying environments, overcoming the main drawbacks of already existing models

    Genetic Landscape of Nonobstructive Azoospermia and New Perspectives for the Clinic

    Get PDF
    We thank Alejandro Fernández Sevilla for his valuable help in the development of Figure 2 of this review. The authors were funded by the Spanish Ministry of Economy and Competitiveness through the Spanish National Plan for Scientific and Technical Research and Innovation (ref. SAF2016-78722-R) and the “Ramón y Cajal” program (ref. RYC-2014-16458).Nonobstructive azoospermia (NOA) represents the most severe expression of male infertility, involving around 1% of the male population and 10% of infertile men. This condition is characterised by the inability of the testis to produce sperm cells, and it is considered to have an important genetic component. During the last two decades, di erent genetic anomalies, including microdeletions of the Y chromosome, karyotype defects, and missense mutations in genes involved in the reproductive function, have been described as the primary cause of NOA in many infertile men. However, these alterations only explain around 25% of azoospermic cases, with the remaining patients showing an idiopathic origin. Recent studies clearly suggest that the so-called idiopathic NOA has a complex aetiology with a polygenic inheritance, which may alter the spermatogenic process. Although we are far from a complete understanding of the molecular mechanisms underlying NOA, the use of the new technologies for genetic analysis has enabled a considerable increase in knowledge during the last years. In this review, we will provide a comprehensive and updated overview of the genetic basis of NOA, with a special focus on the possible application of the recent insights in clinical practice.Funded by the Spanish Ministry of Economy and Competitiveness through the Spanish National Plan for Scientific and Technical Research and Innovation (ref. SAF2016-78722-R) and the “Ramón y Cajal” program (ref. RYC-2014-16458)

    Common Variation in the PIN1 Locus Increases the Genetic Risk to Suffer from Sertoli Cell-Only Syndrome

    Get PDF
    We aimed to analyze the role of the common genetic variants located in the PIN1 locus, a relevant prolyl isomerase required to control the proliferation of spermatogonial stem cells and the integrity of the blood–testis barrier, in the genetic risk of developing male infertility due to a severe spermatogenic failure (SPGF). Genotyping was performed using TaqMan genotyping assays for three PIN1 taggers (rs2287839, rs2233678 and rs62105751). The study cohort included 715 males diagnosed with SPGF and classified as suffering from non-obstructive azoospermia (NOA, n = 505) or severe oligospermia (SO, n = 210), and 1058 controls from the Iberian Peninsula. The allelic frequency differences between cases and controls were analyzed by the means of logistic regression models. A subtype specific genetic association with the subset of NOA patients classified as suffering from the Sertoli cell-only (SCO) syndrome was observed with the minor alleles showing strong risk effects for this subset (ORaddrs2287839 = 1.85 (1.17–2.93), ORaddrs2233678 = 1.62 (1.11–2.36), ORaddrs62105751 = 1.43 (1.06–1.93)). The causal variants were predicted to affect the binding of key transcription factors and to produce an altered PIN1 gene expression and isoform balance. In conclusion, common non-coding single-nucleotide polymorphisms located in PIN1 increase the genetic risk to develop SCO.Plan Andaluz de Investigacion, Desarrollo e Innovacion (PAIDI 2020) PY20_00212 P20_00583Spanish Ministry of Economy and Competitiveness through the Spanish National Plan for Scientific and Technical Research and Innovation SAF2016-78722-R PID2020-120157RB-I00Proyectos I + D + i del Programa Operativo FEDER 2020 B-CTS-584-UGR20 B-CTS-260-UGR20Spanish Government RYC-2014-16458Spanish Ministry of Economy and Competitiveness through the "Juan de la Cierva Incorporacion" program (MCIN/AEI) IJC2018038026-IEuropean CommissionMCIN/AEIFSE "El FSE invierte en tu futuro" FPU20/02926 BES-2017-081222Portuguese Foundation for Science and Technology (FCT) - European Social Funds (COMPETE-FEDER) Portuguese Foundation for Science and Technology IF/01262/2014FCT from the Portuguese State Budget of the Ministry for Science, Technology and High Education SFRH/BPD/120777/2016European Social Fund through the Programa Operacional do Capital HumanoPortuguese Foundation for Science and Technology European Commission UID/BIM/00009/2013 UIDB/UIDP/00009/2020Instituto de Salud Carlos III (FEDER funds/European Regional Development Fund (ERDF)-a way to build Europe) DTS18/00101Generalitat de Catalunya 2017SGR191SNS-Dpt. Salut Generalitat de Catalunya CES09/020 MCIN/AEI BES-2017-081222 PEstC/SAU/LA0003/2013 POCI-01-0145-FEDER-00727

    Seafloor Morphology and Processes in the Alboran Sea

    Get PDF
    The seafloor of the Alboran Sea reflects its complex tectonic, sedimentary, and oceanography dynamics as a consequence of the geological context, involving interaction between the Eurasian and African plates, and oceanographic context, as it is where the Atlantic and Mediterranean waters meet. Their physiography has a semi-enclosed configuration characterized by two margins (the Spanish Iberian and North Africa—mostly Moroccan margins) enclosing deep basins. Tectonic activity is mainly attested by folds and faults that predominantly affect the central and eastern seafloor sectors, as well as numerous seamounts and fluid-flow features (pockmarks, mud volcanoes, and diapirs) that dot the seafloor. The sedimentary and oceanographic processes allow us to distinctly define two principal environments in the Alboran Sea: the shallow proximal margin (continental shelf); and the deep distal margin (continental slope and base of the slope) with the adjacent sub-basins. The shelf mostly comprises prodeltaic and infralittoral prograding wedges, with local bedform fields, submarine valleys, and wave-cut terraces. Coastal and fluvio-marine sedimentary processes, acting since the last glacial period, are responsible for these features. The deep marine environment is characterised by the ubiquity of contourites, whose continuity is interrupted by turbidite systems, canyons, and landslides. The alongslope action of the Mediterranean waters and their interfaces with the Atlantic water has been the main process governing transport, seafloor reworking, and sedimentation of contourites. Mass-movement processes are responsible for the formation of: (1) turbidite systems—turbidity flows and mass flows were dominant during the last glacial sea-level lowstand, evolving to dilute gravity flows during present interglacial high stand; and (2) landslides—the main triggering factors comprising over-steepening, seismicity, under consolidation due to overpressure by interstitial fluids, stratigraphy, and high sedimentation rates. Locally, still-undetermined biological activity in the Spanish and coral activity in the Moroccan margin generated fields of mounded bioconstructions. The seafloor morphology of the Alboran Sea offers interesting clues for assessing the main potential geological hazards, with tectonic seismicity and landslides (as well as their related tsunamis) being some of the most important potential hazards affecting coastal populations. In addition, the seafloor morphology in combination with assemblages of habitat-forming species enables habitat identification and mapping.En prens

    Understanding the complex geomorphology of a deep sea area affected by continental tectonic indentation: The case of the Gulf of Vera (Western Mediterranean)

    Get PDF
    19 pages, 11 figures, 1 table, supplementary data https://doi.org/10.1016/j.geomorph.2022.108126.-- Data availability: Casas, D., & UTM-CSIC. (2018). FAUCES-1 Cruise, RV Sarmiento de Gamboa [Data set]. UTM-CSIC. doi: 10.20351/29SG20170925 Comas, M. & UTM-CSIC. TOPOMED-GASBATS. Cruise, RV Sarmiento de Gamboa [Data set]. UTM-CSIC.doi: 10.20351/29SG20120517We present a multidisciplinary study of morphology, stratigraphy, sedimentology, tectonic structure, and physical oceanography to report that the complex geomorphology of the Palomares continental margin and adjacent Algerian abyssal plain (i.e., Gulf of Vera, Western Mediterranean), is the result of the sedimentary response to the Aguilas Arc continental tectonic indentation in the Eurasian–Africa plate collision. The indentation is imprinted on the basement of the margin with elongated metamorphic antiforms that are pierced by igneous bodies, and synforms that accommodate the deformation and create a complex physiography. The basement is partially covered by Upper Miocene deposits sealed by the regional Messinian Erosive Surface characterized by palaeocanyons that carve the modern margin. These deposits and outcropping basement highs are then covered and shaped by Plio-Quaternary contourites formed under the action of the Light Intermediate and Dense Deep Mediterranean bottom currents. Even though bottom currents are responsible for the primary sedimentation that shapes the margin, 97% of this region's seafloor is affected by mass-movements that modified contourite sediments by eroding, deforming, faulting, sliding, and depositing sediments. Mass-movement processes have resulted in the formation of recurrent mass-flow deposits, an enlargement of the submarine canyons and gully incisions, and basin-scale gravitational slides spreading above the Messinian Salinity Crisis salt layer. The Polopo, Aguilas and Gata slides are characterized by an extensional upslope domain that shapes the continental margin, and by a downslope contractional domain that shapes the abyssal plain with diapirs piercing (hemi)pelagites/sheet-like turbidites creating a seafloor dotted by numerous crests. The mass movements were mostly triggered by the interplay of the continental tectonic indentation of the Aguilas Arc with sedimentological factors over time. The indentation, which involves the progressively southeastward tectonic tilting of the whole land-sea region, likely generated a quasi-continuous oversteepening of the entire margin, thus reducing the stability of the contourites. In addition, tectonic tilting and subsidence of the abyssal plain favoured the flow of the underlying Messinian Salinity Crisis salt layer, contributing to the gravitational instability of the overlying sediments over large areas of the margin and abyssal plainThis research has been funding by the Spanish projects: DAMAGE (CGL2016-80687-RAEI/FEDER) and FAUCES (CTM2015-65461-C2-1-R); and the Junta de Andalucía projects: RNM-148 (AGORA) P18-RT-3275 and PAPEL (B-RNM-301-UGR18). [...] This work acknowledges to IGCP 640 - S4LIDE (Significance of Modern and Ancient Submarine Slope LandSLIDEs), and to the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000928-S

    Common genetic variation in KATNAL1 non-coding regions is involved in the susceptibility to severe phenotypes of male infertility

    Get PDF
    Free PMC article: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9546047/Background: Previous studies in animal models evidenced that genetic mutations of KATNAL1, resulting in dysfunction of its encoded protein, lead to male infertility through disruption of microtubule remodelling and premature germ cell exfoliation. Subsequent studies in humans also suggested a possible role of KATNAL1 single nucleotide polymorphisms in the development of male infertility as a consequence of severe spermatogenic failure. Objectives: The main objective of the present study is to evaluate the effect of the common genetic variation of KATNAL1 in a large and phenotypically well-characterised cohort of infertile men because of severe spermatogenic failure. Materials and methods: A total of 715 infertile men because of severe spermato genic failure, including 210 severe oligospermia and 505 non-obstructive azoospermia patients, as well as 1058 unaffected controls were genotyped for three KATNAL1 single-nucleotide polymorphism taggers (rs2077011, rs7338931 and rs2149971). Case–control association analyses by logistic regression assuming different models and in silico functional characterisation of risk variants were conducted. Results: Genetic associations were observed between the three analysed taggers and different severe spermatogenic failure groups. However, in all cases, the haplotype model (rs2077011*C | rs7338931*T | rs2149971*A) better explained the observed associations than the three risk alleles independently. This haplotype was associated with non-obstructive azoospermia (adjusted p = 4.96E-02, odds ratio = 2.97), Sertoli cell only syndrome (adjusted p = 2.83E-02, odds ratio = 5.16) and testicular sperm extraction unsuccessful outcomes (adjusted p = 8.99E-04, odds ratio = 6.13). The in silico analyses indicated that the effect on severe spermatogenic failure predisposition could be because of an alteration of the KATNAL1 splicing pattern. Conclusions: Specific allelic combinations of KATNAL1 genetic polymorphisms may confer a risk of developing severe male infertility phenotypes by favouring the overrepresentation of a short non-functional transcript isoform in the testis.This work was supported by the Spanish Ministry of Economy and Competitiveness through the Spanish National Plan for Scientific and Technical Research and Innovation (refs. SAF2016-78722-R and PID2020-120157RB-I00), the ‘Instituto de Salud Carlos III’ (Fondo de Investigaciones Sanitarias)/Fondo Europeo de Desarrollo Regional ‘Una manera de hacer Europa’ (FIS/FEDER) (ref. DTS18/00101 to Sara Larriba), the Generalitat de Catalunya (ref. 2017SGR191), the ‘Ramón y Cajal’ program (ref. RYC-2014-16458) and the ‘Juan de la Cierva Incorporación’ program (ref. IJC2018-038026-I), as well as the Andalusian Government through the R&D&i Projects Grants for Universities and Public Research Entities (ref. PY20_00212), which include FEDER funds. Andrea Guzmán-Jiménez was a recipient of a grant from the Spanish Ministry of Education and Professional Training (‘Becas de Colaboración en Departamentos Universitarios para el curso académico 2020/2021’). Patricia I. Marques is supported by the FCT post-doctoral fellowship (SFRH/BPD/120777/2016), financed from the Portuguese State Budget of the Ministry for Science, Tech nology and High Education and from the European Social Fund, available through the ‘Programa Operacional do Capital Humano’. João Gonçalves was partially funded by FCT/MCTES through national funds attributed to the Centre for Toxicogenomics and Human Health— ToxOmics (UID/BIM/00009/2016 and UIDB/00009/2020). Sara Larriba is sponsored by the Researchers Consolidation Program (ISCIII SNS/Dpt. Salut Generalitat de Catalunya) (CES09/020).info:eu-repo/semantics/publishedVersio

    Common genetic variation in KATNAL1 non‐coding regions is involved in the susceptibility to severe phenotypes of male infertility

    Get PDF
    © 2022 The Authors. Andrology published by Wiley Periodicals LLC on behalf of American Society of Andrology and European Academy of Andrology. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.Background: Previous studies in animal models evidenced that genetic mutations of KATNAL1, resulting in dysfunction of its encoded protein, lead to male infertility through disruption of microtubule remodelling and premature germ cell exfoliation. Subsequent studies in humans also suggested a possible role of KATNAL1 single-nucleotide polymorphisms in the development of male infertility as a consequence of severe spermatogenic failure. Objectives: The main objective of the present study is to evaluate the effect of the common genetic variation of KATNAL1 in a large and phenotypically well-characterised cohort of infertile men because of severe spermatogenic failure. Materials and methods: A total of 715 infertile men because of severe spermatogenic failure, including 210 severe oligospermia and 505 non-obstructive azoospermia patients, as well as 1058 unaffected controls were genotyped for three KATNAL1 single-nucleotide polymorphism taggers (rs2077011, rs7338931 and rs2149971). Case-control association analyses by logistic regression assuming different models and in silico functional characterisation of risk variants were conducted. Results: Genetic associations were observed between the three analysed taggers and different severe spermatogenic failure groups. However, in all cases, the haplotype model (rs2077011*C | rs7338931*T | rs2149971*A) better explained the observed associations than the three risk alleles independently. This haplotype was associated with non-obstructive azoospermia (adjusted p = 4.96E-02, odds ratio = 2.97), Sertoli-cell only syndrome (adjusted p = 2.83E-02, odds ratio = 5.16) and testicular sperm extraction unsuccessful outcomes (adjusted p = 8.99E-04, odds ratio = 6.13). The in silico analyses indicated that the effect on severe spermatogenic failure predisposition could be because of an alteration of the KATNAL1 splicing pattern. Conclusions: Specific allelic combinations of KATNAL1 genetic polymorphisms may confer a risk of developing severe male infertility phenotypes by favouring the overrepresentation of a short non-functional transcript isoform in the testis.This work was supported by the Spanish Ministry of Economy and Competitiveness through the Spanish National Plan for Scientific and Technical Research and Innovation (refs. SAF2016-78722-R and PID2020-120157RB-I00), the ‘Instituto de Salud Carlos III’ (Fondo de Investigaciones Sanitarias)/Fondo Europeo de Desarrollo Regional ‘Una manera de hacer Europa’ (FIS/FEDER) (ref. DTS18/00101 to Sara Larriba), the Generalitat de Catalunya (ref. 2017SGR191), the ‘Ramón y Cajal’ program (ref. RYC-2014-16458) and the ‘Juan de la Cierva Incorporación’ program (ref. IJC2018-038026-I), as well as the Andalusian Government through the R&D&i Projects Grants for Universities and Public Research Entities (ref. PY20_00212), which include FEDER funds. Andrea Guzmán-Jiménez was a recipient of a grant from the Spanish Ministry of Education and Professional Training (‘Becas de Colaboración en Departamentos Universitarios para el curso académico 2020/2021’). Patricia I. Marques is supported by the FCT post-doctoral fellowship (SFRH/BPD/120777/2016), financed from the Portuguese State Budget of the Ministry for Science, Technology and High Education and from the European Social Fund, available through the ‘Programa Operacional do Capital Humano’. João Gonçalves was partially funded by FCT/MCTES through national funds attributed to the Centre for Toxicogenomics and Human Health—ToxOmics (UID/BIM/00009/2016 and UIDB/00009/2020). Sara Larriba is sponsored by the Researchers Consolidation Program (ISCIII SNS/Dpt. Salut Generalitat de Catalunya) (CES09/020).info:eu-repo/semantics/publishedVersio

    The Strait of Gibraltar: submarine morphology, oceanogra- phic connections and evolution

    Get PDF
    32 pages, 10 figures[EN] The Strait of Gibraltar is a first-order physiographic feature between southern Iberia and northern Africa. It has been excavated over the Arc of Gibraltar in favor of a conjugated ENE-WSW and WNW-ESE fault system that have acted as weakness structures. The Strait was generated by erosive processes of the water masses coming from the Atlantic Ocean in the lower Pliocene, due to the rude and rapid flooding of the Alboran Sea basin. Once the flood stabilized the exchange and interaction of the Atlantic and Mediterranean water masses began as we know it today; the Atlantic water that circulates on the surface of the Strait towards the Alborán Sea, and the Mediterranean water masses that circulate in depth towards the Atlantic Ocean. The acceleration of the Atlantic and Mediterranean water masses in the Strait corridor has favored the development of erosive processes.These processeshave allowed the outcrops of the rocky substratum, the development of sedimentary instabilities and the generation of paleochannels, carbonate crusts and cold-water coral formations during the Pliocene and Quaternary. Likewise, the acceleration of the Mediterranean water masses on their way in and out of the Strait and their interaction with the sea floor have controlled sedimentation both in the Alborán Sea basin and in the Gulf of Cádiz, forming contouritic depositional systems[ES] El estrecho de Gibraltar es un rasgo fisiográfico de primer orden entre el sur de Iberia y el norte de África. Ha sido excavado sobre el Arco de Gibraltar a favor de un sistema de fallas conjugadas de direcciones ENE-OSO y ONO-ESE que han actuado como estructuras de debilidad. El Estrecho fue generado por procesos erosivos de las masas de agua procedentes del océano Atlántico en el Plioceno inferior, al producirse de forma brusca y rápida la inundación de la cuenca del mar de Alborán. Una vez estabilizada la inundación comenzó el intercambio y la interacción de las masas de agua atlántica y mediterránea tal y como hoy la conocemos: el agua atlántica que circula en la superficie del Estrecho hacia el mar de Alborán, y las masas de agua mediterráneas que transitan en profundidad hacia el océano Atlántico. La aceleración de las masas de agua atlántica y mediterránea en el corredor del Estrecho ha favorecido el desarrollo de procesos erosivos. Estos procesos han permitido los afloramientos del substrato rocoso, el desarrollo de inestabilidades sedimentarias, generación de paleocanales, costras carbonatas y formaciones coralígenas de aguas frías durante el Plioceno y el Cuaternario.Asimismo, la aceleración de las masas de agua mediterráneas en su camino de entrada y salida del Estrecho y su interacción con el suelo marino han controlado la sedimentación tanto en la cuenca del mar de Alborán como en el golfo de Cádiz, formando sistemas deposicionales contorníticosWith the institutional support of the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000928-S)Peer reviewe

    Lo glocal y el turismo. Nuevos paradigmas de interpretación.

    Get PDF
    El estudio del turismo se realiza desde múltiples escalas y enfoques, este libro aborda muchos temas que es necesario discutir desde diversas perspectivas; es el caso de la reflexión sobre la propia disciplina y sus conceptos, así como los asuntos específicos referidos al impacto territorial, los tipos de turismo, las cuestiones ambientales, el tema de la pobreza, la competitividad, las políticas públicas, el papel de las universidades, las áreas naturales protegidas, la sustentabilidad, la cultura, el desarrollo, la seguridad, todos temas centrales documentados y expuestos con originalidad y dominio del asunto. Lo multiescalar es básico para la comprensión del sistema turístico, sistema formado de procesos globales, regionales y locales. El eje de discusión del libro es lo glocal, esa interacción entre lo nacional y local con lo global
    corecore